101. Symmetric Tree
Easy
Given the root
of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).
Example 1:
Input: root = [1,2,2,3,4,4,3]
Output: true
Example 2:
Input: root = [1,2,2,null,3,null,3]
Output: false
Constraints:
The number of nodes in the tree is in the range
[1, 1000]
.-100 <= Node.val <= 100
Follow up: Could you solve it both recursively and iteratively?
Recursion
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
if root is None:
return True
def recursion(left, right):
if left is None and right is None:
return True
elif left is None or right is None:
return False
elif left.val != right.val:
return False
return recursion(left.right, right.left) and recursion(left.left, right.right)
return recursion(root.left, root.right)
Iterative
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
# .
if root is None:
return True
q = [[root.left, root.right]]
while q:
left, right = q.pop(0)
if left is None and right is None:
continue
elif left is None or right is None:
return False
elif left.val != right.val:
return False
else:
q.append([left.right, right.left])
q.append([left.left, right.right])
return True
Last updated