897. Increasing Order Search Tree
Easy
Given the root
of a binary search tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root of the tree, and every node has no left child and only one right child.
Example 1:
Input: root = [5,3,6,2,4,null,8,1,null,null,null,7,9]
Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]
Example 2:
Input: root = [5,1,7]
Output: [1,null,5,null,7]
Constraints:
The number of nodes in the given tree will be in the range
[1, 100]
.0 <= Node.val <= 1000
Solution 1:
Time Complexity : O(n) Space Complexity : O(n)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def increasingBST(self, root: TreeNode) -> TreeNode:
values = []
def recursion(root, values):
if not root:
return
recursion(root.left, values)
values.append(root.val)
recursion(root.right, values)
recursion(root, values)
return self.build_skewed(values)
def build_skewed(self, values):
root = temp = None
for value in values:
node = TreeNode(value)
if root is None:
root = temp = node
else:
temp.right = node
temp = node
return root
Solution 2:
Time Complexity : O(n) Space Complexity : O(1)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def increasingBST(self, root: TreeNode) -> TreeNode:
def recursion(root):
if not root:
return
recursion(root.left)
root.left = None
self.current.right = root
self.current = root
recursion(root.right)
head = self.current = TreeNode()
recursion(root)
return head.right
Last updated