1329. Sort the Matrix Diagonally
Medium
A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix's end. For example, the matrix diagonal starting from mat[2][0]
, where mat
is a 6 x 3
matrix, includes cells mat[2][0]
, mat[3][1]
, and mat[4][2]
.
Given an m x n
matrix mat
of integers, sort each matrix diagonal in ascending order and return the resulting matrix.
Example 1:
Input: mat = [[3,3,1,1],[2,2,1,2],[1,1,1,2]]
Output:
[[1,1,1,1],[1,2,2,2],[1,2,3,3]]
Example 2:
Input: mat = [[11,25,66,1,69,7],[23,55,17,45,15,52],[75,31,36,44,58,8],[22,27,33,25,68,4],[84,28,14,11,5,50]]
Output:
[[5,17,4,1,52,7],[11,11,25,45,8,69],[14,23,25,44,58,15],[22,27,31,36,50,66],[84,28,75,33,55,68]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 100
1 <= mat[i][j] <= 100
class Solution:
def diagonalSort(self, mat: List[List[int]]) -> List[List[int]]:
#.
row, col = len(mat), len(mat[0])
# This diagonal parse logic is important
for i in range(1, row + col - 2):
if i < row:
start_row, start_col = row - i - 1, 0
else:
start_row, start_col = 0, i - row + 1
# Add all diagonal elements to arr
diag = []
while start_row < row and start_col < col:
diag.append(mat[start_row][start_col])
start_row += 1
start_col += 1
# Sort array
diag.sort()
start_row -= 1
start_col -= 1
while start_row >= 0 and start_col >= 0:
# Add back all sort diagonal elements back
mat[start_row][start_col] = diag.pop()
start_row -= 1
start_col -= 1
return(mat)
Previous363. Max Sum of Rectangle No Larger Than KNext235. Lowest Common Ancestor of a Binary Search Tree
Last updated