236. Lowest Common Ancestor of a Binary Tree

Medium


Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.

Example 2:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

Example 3:

Input: root = [1,2], p = 1, q = 2
Output: 1

Constraints:

  • The number of nodes in the tree is in the range [2, 105].

  • -109 <= Node.val <= 109

  • All Node.val are unique.

  • p != q

  • p and q will exist in the tree.

class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if root is None:
            return None
        if root == q or root == p:
            return root
        left = self.lowestCommonAncestor(root.left, p,q)
        right = self.lowestCommonAncestor(root.right, p ,q)
        if left and right:
            return root
        return left or right

Last updated