938. Range Sum of BST
Easy
Given the root
node of a binary search tree and two integers low
and high
, return the sum of values of all nodes with a value in the inclusive range [low, high]
.
Example 1:

Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
Output: 32
Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.
Example 2:

Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
Output: 23
Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.
Constraints:
The number of nodes in the tree is in the range
[1, 2 * 104]
.1 <= Node.val <= 105
1 <= low <= high <= 105
All
Node.val
are unique.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.s = 0
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
if root is None:
return
if low <= root.val <= high:
self.s += root.val
if root.val > high:
self.rangeSumBST(root.left, low, high)
elif root.val < low:
self.rangeSumBST(root.right, low, high)
else:
self.rangeSumBST(root.left, low, high)
self.rangeSumBST(root.right, low, high)
return self.s
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
result = 0
def recursion(root):
nonlocal result
if root is None:
return 0
recursion(root.left)
if low <= root.val and root.val <= high:
result += root.val
recursion(root.right)
recursion(root)
return result
Last updated