78. Subsets

Medium


Given an integer array nums of unique elements, return all possible subsets (the power set).

The solution set must not contain duplicate subsets. Return the solution in any order.

Example 1:

Input: nums = [1,2,3]
Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

Example 2:

Input: nums = [0]
Output: [[],[0]]

Constraints:

  • 1 <= nums.length <= 10

  • -10 <= nums[i] <= 10

  • All the numbers of nums are unique.

class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        l = []
        def recursion(nums, index, result):
            nonlocal l
            if index >= len(nums):
                # print(result)
                l.append(result)
            for i in range(index, len(nums)):
                result.append(nums[i])
                recursion(nums, i+1, result[:])
                result.pop()
                recursion(nums, i+1, result[:])
        recursion(nums, 0, [])
        return set(tuple(row) for row in l)
    
    
# Faster Solution
class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        result = []
        self.dfs(nums ,[], result)
        return result
    
    def dfs(self, nums, path, result):
        result.append(path[:])
        for index in range(len(nums)):
            self.dfs(nums[index+1:], path + [nums[index]], result)

# Solution 3 : Related to Subsets 2 PB 90         
class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        nums.sort()
        def recursion(nums, start, path, result):
            result.append(path[:])
            for index in range(start, len(nums)):
                # if index != start and nums[index] == nums[index-1]:
                #     continue
                path.append(nums[index])
                recursion(nums, index+1, path, result)
                path.pop()
        result = []
        recursion(nums, 0, [], result)
        return result

Last updated