669. Trim a Binary Search Tree
Medium
Given the root
of a binary search tree and the lowest and highest boundaries as low
and high
, trim the tree so that all its elements lies in [low, high]
. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node's descendant should remain a descendant). It can be proven that there is a unique answer.
Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.
Example 1:
Input: root = [1,0,2], low = 1, high = 2
Output: [1,null,2]
Example 2:
Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
Output: [3,2,null,1]
Constraints:
The number of nodes in the tree in the range
[1, 104]
.0 <= Node.val <= 104
The value of each node in the tree is unique.
root
is guaranteed to be a valid binary search tree.0 <= low <= high <= 104
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
if not root or (root.left is None and root.right is None and (root.val < low or root.val > high)):
return None
if root.val < low:
return self.trimBST(root.right, low, high)
elif root.val > high:
return self.trimBST(root.left, low, high)
# Check for left value
if root.left and root.left.val < low:
root.left = self.trimBST(root.left.right, low, high)
else:
root.left = self.trimBST(root.left, low, high)
# Check for right value
if root.right and root.right.val > high:
root.right = self.trimBST(root.right.left, low, high)
else:
root.right = self.trimBST(root.right, low, high)
return root
More Clean Solution
If you will check above solution you might notice that Line 17 & 22 are being handled by Line 12 & 14 respectively.
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
if not root:
return None
if root.val < low:
return self.trimBST(root.right, low, high)
elif root.val > high:
return self.trimBST(root.left, low, high)
root.left = self.trimBST(root.left, low, high)
root.right = self.trimBST(root.right, low, high)
return root
Last updated