99. Recover Binary Search Tree
Medium
You are given the root
of a binary search tree (BST), where the values of exactly two nodes of the tree were swapped by mistake. Recover the tree without changing its structure.
Example 1:
Input: root = [1,3,null,null,2]
Output: [3,1,null,null,2]
Explanation: 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid.
Example 2:
Input: root = [3,1,4,null,null,2]
Output: [2,1,4,null,null,3]
Explanation: 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST valid.
Constraints:
The number of nodes in the tree is in the range
[2, 1000]
.-231 <= Node.val <= 231 - 1
Follow up: A solution using O(n)
space is pretty straight-forward. Could you devise a constant O(1)
space solution?
Solution 1 : Using Recursion
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def recoverTree(self, root: Optional[TreeNode]) -> None:
"""
Do not return anything, modify root in-place instead.
"""
self.first = None
self.second = None
self.prev = TreeNode(-float("inf"))
self.traverse(root)
self.first.val, self.second.val = self.second.val, self.first.val
def traverse(self, root):
if not root:
return
self.traverse(root.left)
if self.first is None and self.prev.val >= root.val:
self.first = self.prev
if self.first is not None and self.prev.val >= root.val:
self.second = root
self.prev = root
self.traverse(root.right)
Solution 2 : Morris Traversal
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def recoverTree(self, root: Optional[TreeNode]) -> None:
# Morris Traversal
# If you get confused , especially with condition at Line 22, read
# https://stackoverflow.com/questions/5502916/explain-morris-inorder-tree-traversal-without-using-stacks-or-recursion
current, arr = root, []
prev = TreeNode(-float("inf"))
while current:
if current.left is None:
if prev.val > current.val:
arr += [prev, current]
prev = current
current = current.right
else:
pre = current.left
while pre.right and pre.right != current:
pre = pre.right
if pre.right is None:
pre.right = current
current = current.left
else:
pre.right = None
if prev.val > current.val:
arr += [prev, current]
prev = current
current = current.right
arr[0].val, arr[-1].val = arr[-1].val, arr[0].val
Last updated