98. Validate Binary Search Tree
Medium
Given the root
of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [2,1,3]
Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.
Constraints:
The number of nodes in the tree is in the range
[1, 104]
.-231 <= Node.val <= 231 - 1
Solution 1 : Without Any Space
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isValidBST(self, root: Optional[TreeNode]) -> bool:
def recursion(root, floor = -float("inf"), ceil = float("inf")):
if root is None:
return True
if root.val <= floor or root.val >= ceil:
return False
return recursion(root.left, floor , root.val) and recursion(root.right, root.val, ceil)
return recursion(root)
class Solution:
def isValidBST(self, root: Optional[TreeNode], floor = -float("inf"), ceil = float("inf")) -> bool:
if root is None:
return True
if root.val <= floor or root.val >= ceil:
return False
return self.isValidBST(root.left, floor , root.val) and self.isValidBST(root.right, root.val, ceil)
Solution 2 : With Space
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isValidBST(self, root: Optional[TreeNode]) -> bool:
arr = []
self.inorder(root, arr)
for index in range(1, len(arr)):
if arr[index] <= arr[index-1]:
return False
return True
def inorder(self, root, arr):
if not root:
return
self.inorder(root.left, arr)
arr.append(root.val)
self.inorder(root.right, arr)
Last updated