902. Numbers At Most N Given Digit Set
Hard
Given an array of digits
which is sorted in non-decreasing order. You can write numbers using each digits[i]
as many times as we want. For example, if digits = ['1','3','5']
, we may write numbers such as '13'
, '551'
, and '1351315'
.
Return the number of positive integers that can be generated that are less than or equal to a given integer n
.
Example 1:
Input: digits = ["1","3","5","7"], n = 100
Output: 20
Explanation:
The 20 numbers that can be written are:
1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.
Example 2:
Input: digits = ["1","4","9"], n = 1000000000
Output: 29523
Explanation:
We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers,
81 four digit numbers, 243 five digit numbers, 729 six digit numbers,
2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers.
In total, this is 29523 integers that can be written using the digits array.
Example 3:
Input: digits = ["7"], n = 8
Output: 1
Constraints:
1 <= digits.length <= 9
digits[i].length == 1
digits[i]
is a digit from'1'
to'9'
.All the values in
digits
are unique.digits
is sorted in non-decreasing order.1 <= n <= 109
I took help from other leetcode solution to get to this solution since I was able to partially solve this problem.
class Solution:
def atMostNGivenDigitSet(self, digits: List[str], n: int) -> int:
count = 0
length = int(math.log(n,10))
totalDigits = len(digits)
print(length)
for index in range(length):
count += pow(totalDigits, index+1)
# print(self.numbersWithSameLength(digits,n))
return count + self.numbersWithSameLength(digits,n)
def numbersWithSameLength(self, digits, n):
if n < 1:
return 0
totalDigits = len(digits)
length = int(math.log(n,10))
# print('Length', length)
number = pow(10,length) # if n=20 then number will be 10
# print('number', number)
leading_number = n//number
# print('Leading', leading_number)
count = 0
for digit in digits:
if (int(digit)) < leading_number:
count += pow(totalDigits, length)
if (int(digit)) == leading_number:
if length == 0:
# Single Digit number Case
count += 1
elif n-(leading_number*number) >= number//10:
count += self.numbersWithSameLength(digits, n-(leading_number*number))
if int(digit) > leading_number:
return count
return count
Last updated