986. Interval List Intersections
Medium
You are given two lists of closed intervals, firstList
and secondList
, where firstList[i] = [starti, endi]
and secondList[j] = [startj, endj]
. Each list of intervals is pairwise disjoint and in sorted order.
Return the intersection of these two interval lists.
A closed interval [a, b]
(with a <= b
) denotes the set of real numbers x
with a <= x <= b
.
The intersection of two closed intervals is a set of real numbers that are either empty or represented as a closed interval. For example, the intersection of [1, 3]
and [2, 4]
is [2, 3]
.
Example 1:

Input: firstList = [[0,2],[5,10],[13,23],[24,25]], secondList = [[1,5],[8,12],[15,24],[25,26]]
Output: [[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]]
Example 2:
Input: firstList = [[1,3],[5,9]], secondList = []
Output: []
Example 3:
Input: firstList = [], secondList = [[4,8],[10,12]]
Output: []
Example 4:
Input: firstList = [[1,7]], secondList = [[3,10]]
Output: [[3,7]]
Constraints:
0 <= firstList.length, secondList.length <= 1000
firstList.length + secondList.length >= 1
0 <= starti < endi <= 109
endi < starti+1
0 <= startj < endj <= 109
endj < startj+1
class Solution:
def intervalIntersection(self, firstList: List[List[int]], secondList: List[List[int]]) -> List[List[int]]:
index1 = 0
index2 = 0
result = []
while index1 < len(firstList) and index2 < len(secondList):
interval = [max(firstList[index1][0], secondList[index2][0]), min(firstList[index1][1], secondList[index2][1])]
if interval[0] <= interval[1]:
result.append(interval)
if firstList[index1][1] < secondList[index2][1]:
index1 += 1
else:
index2 += 1
return result
Last updated